Approximation to x^{n} by Lower Degree Rational Functions

Donald J. Newman*
Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122
Communicated by Oved Shisha

Received April 28, 1977

Recently it was discovered that effective approximations to x^{n} by polynomials of degree k were possible if and only if k was much larger than $n^{1 / 2}$ (see [1]). In this note we consider this same problem with the word "polynomial" replaced by "rational function." Interestingly there is then no necessary restriction on k ! Effective approximation is possible as long as k is large-independent of n. (Score another one for rational approximation!)

Set $S(x)=\sum_{i=0}^{k}\left({ }_{i}^{n+i-1}\right)(1-x)^{i}$ (the k th partial sum of the power series for x^{-n}). Our result is that

$$
\begin{equation*}
\frac{1}{S(x)}-x^{n} \leqslant \frac{2}{k} \quad \text { for } 0 \leqslant x \leqslant 1 \tag{1}
\end{equation*}
$$

which is the quantitative form of our assertion above (the left-hand side being clearly nonnegative). In fact we shall prove

$$
\begin{equation*}
\frac{1}{S(x)}-x^{n} \leqslant \frac{2}{k}\left(-\frac{2 n-2}{2 n+k}\right)^{n-1} \quad \text { for } \quad 0 \leqslant x \leqslant 1 \tag{2}
\end{equation*}
$$

Equation (2) indeed shows that the approximation gets better as n gets larger. The quantity $((2 n-2) /(2 n+k))^{n-1}$ decreases with n and so, although for $n=1$ we obtain an error estimate of $2 / k$, for all $n \geqslant 2$ we obtain $4 /$ $k(k+4)$ while for $n \geqslant 3$ we get $32 / k(k+6)^{2}$, etc.

We use the explicit formula for the remainder term of a power series expansion. In our case this gives

$$
\begin{aligned}
S(x) & =x^{-n}-\int_{x}^{1} \frac{(t-x)^{k}}{k!}\left(\frac{d}{d t}\right)^{k+1} t^{-n} d t \\
& =x^{-n}\left(1-C \int_{x}^{1}\left(1-\frac{x}{t}\right)^{k}\left(\frac{x}{t}\right)^{n} \frac{d t}{t}\right), \quad C \text { constant }
\end{aligned}
$$

[^0]Next we change variables by writing

$$
\begin{equation*}
u=\left(\frac{x}{t}\right)^{n}, z=x^{n}, \quad \text { and } \quad \quad \epsilon=\frac{2}{k}\left(\frac{2 n-2}{2 n+k}\right)^{u-1}, \tag{3}
\end{equation*}
$$

so that our formula for $S(x)$ becomes

$$
\begin{equation*}
S(x)=z^{-1}(1-c I(z)), \quad I(z)=\int_{z}^{1}\left(1-u u^{1 ; n}\right)^{k} d u, \tag{4}
\end{equation*}
$$

where c is a constant. By letting $z \rightarrow 0$ we obtain $c=1 / I(0)$ and

$$
\begin{equation*}
S(x)=\frac{1}{z}\left(1-\frac{I(z)}{I(0)}\right) . \tag{5}
\end{equation*}
$$

Using (5) we find that (2) may be written

$$
\frac{z}{1-I(z) / I(0)}-z \leqslant \epsilon, \quad \text { or } \quad(z-\epsilon) I(z) \leqslant \epsilon I(0)
$$

which is to say

$$
\begin{equation*}
\text { on }[0,1],(z+\epsilon) I(z) \text { takes its maximum at } 0 . \tag{6}
\end{equation*}
$$

We show. in fact, by direct differentiation, that $(z+\epsilon) I(z)$ is convex on [0.1]. This forces the maximum to be taken at an endpoint which must be 0 as $I(1)=0$. We have, namely,

$$
\begin{aligned}
((z+\epsilon) I(z))^{\prime \prime} & =2 I(z)+(z+\epsilon) I^{\prime \prime}(z) \\
& =-2\left(1-z^{1 / n}\right)^{k}+(z+\epsilon) k\left(1-z^{1 / n}\right)^{z_{-1}} \frac{1}{n} z^{1 ; n-1} \\
& =\frac{\left(1-\frac{\left.z^{1 / n}\right)^{k-1}}{n}\left[(k+2 n) z^{1 ; n}+k \epsilon \Sigma^{1 ; n-1}-2 n\right]\right.}{n}
\end{aligned}
$$

and so we need only prove that

$$
\begin{equation*}
(k+2 n)^{1 / n}+k \in z^{1 / n-1} \geqslant 2 n . \tag{7}
\end{equation*}
$$

If we write $w=(2 n-2)\left((k+2 n) z^{-1 / n}\right.$ and recall the definition of ε in (3), we find that (7) becomes ($2 n-2$) $/ w+2 w^{n-1} \geqslant 2 n$ or ($w-1$) $\left(\left(w^{n-1}+w^{n-2}+\cdots+1\right)-n \geqslant 0\right.$. Both factors are $\geqslant 0$ if $n \geqslant 1$ and $\leqslant 0$ if $w \leqslant 1$, and in either case, our result follows.

Reference

1. D. J. Newman and T. J. Riviln, Approximation of monomials by polynomials of lower degree, Aequationes Math. 14 (1976), 451-455.

[^0]: * Supported by National Science Foundation, Grant MPS08090.

