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Approximation to xn by Lower Degree Rational Functions
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Recently it was discovered that effective approximations to x n by poly­
nomials of degree k were possible if and only if k was much larger than nl (2

(see [1]). In this note we consider this same problem with the word "poly­
nomial" replaced by "rational function." Interestingly there is then no
necessary restriction on k! Effective approximation is possible as long as k
is large-independent of n. (Score another one for rational approximation!)

Set Sex) = L;=O C+~-I) (1 - xy (the kth partial sum of the power series
for x-n). Our result is that

for 0 ~ x ~ 1, (1)

which is the quantitative form of our assertion above (the left-hand side being
clearly nonnegative). In fact we shall prove

1 2 ( 211 - 2 )"-1
S(x) - x

n
~ T 211 + k for 0 ~ x ~ 1. (2)

Equation (2) indeed shows that the approximation gets better as n gets
larger. The quantity ((2n - 2)/(2n + k))"-l decreases with n and so, although
for n = I we obtain an error estimate of 21k, for all n ;;? 2 we obtain 41
k(k + 4) while for n ;;? 3 we get 321k(k + 6)2, etc.

We use the explicit formula for the remainder term of a power series
expansion. In our case this gives

Jl (t - X)k ( d )k+1
Sex) = x-n

- " - t- il dt
c,; k. dt,

= x-n (1 _ Cr (1 _ X')k (~)" ~) ,
• or ' t t t,

C constant.
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RATIONAL APPROXIMATION TO X"

Next we change variables by writing

u = ( x )' n ~ = ,-'n"t ,~ ,., and
2 '211 - 2 \1/.-1

E=-( , I ,
k , 211 + K I

so that our formula for SeX) becomes

Sex) = rl(1 - cI(z)), I(z) = f (l - uLny dll, (4', J

\vhere c is a constant. By letting:: -->- 0 we obtain c = 1(1(0) and

I ' l(z) \
Sex) = z(1 - 1(0) J.

Using (5) we find that (2) may be written

or (z ~ E) I(z) ~ cl(O)

which is to say

on [0, 1], (z + E) fez) takes its maximum at O. (6)

We show. in fact, by direct differentiation, that (.: + E) fez) is convex on
[0. 1]. This forces the maximum to be taken at an endpoint which must be
o as 1(1) = O. We have, namely,

«Z -:- E) I(z))" = 2/ (z) + (z + E) I"(z)

= - 2(1 - Zl/ny + (:: + E) k(l - Z~','Y-1 ~ Zl,11-1
n

and so we need only prove that

(k + 211)1/11 + k E Zl/II-1 > 2n. (7)

If \ve write ii' = (211 - 2)(k + 211) :r1 / 1l and recall the definition of €

in (3), we find that (7) becomes (2n - 2)/11' --'- 21l,n-1 > 211 or (IV - 1)
«11'''-1 -1- ][,,'-2 -l-- ... + 1) - 11 > O. Both factors are> 0 if H > 1 and 0( 0
if H' ~ I, and in either case, our result foHows.
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